R:Статистическая проверка принадлежности нормальному распределения — различия между версиями

Материал Psylab.info - энциклопедии психодиагностики
Перейти к: навигация, поиск
м (Сравнительная таблица пакетов)
м (Сравнительная таблица пакетов)
Строка 111: Строка 111:
 
* <code>sj.test</code> - SJ-критерий
 
* <code>sj.test</code> - SJ-критерий
  
==== Сравнительная таблица пакетов ====
+
==== Сравнительная таблица реализации критериев в пакетах ====
  
 
{| class="wide wikitable sortable" style="text-align: center"
 
{| class="wide wikitable sortable" style="text-align: center"
 
 
! Критерии
 
! Критерии
 
! {{r-package|stats|core=true}}
 
! {{r-package|stats|core=true}}
Строка 122: Строка 121:
 
! {{r-package|tseries}}
 
! {{r-package|tseries}}
 
! {{r-package|lawstat}}
 
! {{r-package|lawstat}}
 
 
|-
 
|-
 
| style="text-align: left" | Критерий Шапиро - Уилка || + || - || - || + || - || -
 
| style="text-align: left" | Критерий Шапиро - Уилка || + || - || - || + || - || -
 
|-
 
|-
 
| style="text-align: left" | Критерий Колмогорова - Смирнова || + || - || - || + || - || -
 
| style="text-align: left" | Критерий Колмогорова - Смирнова || + || - || - || + || - || -
 
 
|-
 
|-
 
| style="text-align: left" | Критерий Андерсона - Дарлинга || - || + || - || + || - || -
 
| style="text-align: left" | Критерий Андерсона - Дарлинга || - || + || - || + || - || -
 
 
|-
 
|-
 
| style="text-align: left" | Критерий Крамера - фон Мизеса || - || + || - || + || - || -
 
| style="text-align: left" | Критерий Крамера - фон Мизеса || - || + || - || + || - || -
 
 
|-
 
|-
 
| style="text-align: left" | Критерий Лиллиефорса || - || + || - || + || - || -
 
| style="text-align: left" | Критерий Лиллиефорса || - || + || - || + || - || -
 
 
|-
 
|-
 
| style="text-align: left" | Критерий χ2 Пирсона || - || + || - || + || - || -
 
| style="text-align: left" | Критерий χ2 Пирсона || - || + || - || + || - || -
 
 
|-
 
|-
 
| style="text-align: left" | Критерий Шапиро - Франчия || - || + || - || + || - || -
 
| style="text-align: left" | Критерий Шапиро - Франчия || - || + || - || + || - || -
 
 
|-
 
|-
 
| style="text-align: left" | Критерий Д'Агостино || - || - || + || + || - || -
 
| style="text-align: left" | Критерий Д'Агостино || - || - || + || + || - || -
 
 
|-
 
|-
 
| style="text-align: left" | Критерий Бонетта – Сайера || - || - || + || - || - || -
 
| style="text-align: left" | Критерий Бонетта – Сайера || - || - || + || - || - || -
 
 
|-
 
|-
| style="text-align: left" | Критерий Жарка-Бера || - || - || + || + || + || +
+
| style="text-align: left" | Критерий Жарка - Бера || - || - || + || + || + || +
 +
|}
  
 +
=== Таблица вызова функций в пакетах ===
 +
 +
{| class="wide wikitable sortable" style="text-align: center"
 +
! Критерии
 +
! {{r-package|stats|core=true}}
 +
! {{r-package|nortest}}
 +
! {{r-package|moments}}
 +
! {{r-package|fBasics}}
 +
! {{r-package|tseries}}
 +
! {{r-package|lawstat}}
 +
|-
 +
| style="text-align: left" | Критерий Шапиро - Уилка || <code>shapiro.test</code> || - || - || <code>shapiroTest</code> || - || -
 +
|-
 +
| style="text-align: left" | Критерий Колмогорова - Смирнова || <code>ks.test</code> || - || - || <code>ksnormTest</code> || - || -
 +
|-
 +
| style="text-align: left" | Критерий Андерсона - Дарлинга || - || <code>ad.test</code> || - || <code>adTest</code> || - || -
 +
|-
 +
| style="text-align: left" | Критерий Крамера - фон Мизеса || - || <code>cvm.test</code> || - || <code>cvmTest</code> || - || -
 +
|-
 +
| style="text-align: left" | Критерий Лиллиефорса || - || <code>lillie.test</code> || - || <code>lillieTest</code> || - || -
 +
|-
 +
| style="text-align: left" | Критерий χ2 Пирсона || - || <code>pearson.test</code> || - || <code>pchiTest</code> || - || -
 +
|-
 +
| style="text-align: left" | Критерий Шапиро - Франчия || - || <code>sf.test</code> || - || <code>sfTest</code> || - || -
 +
|-
 +
| style="text-align: left" | Критерий Д'Агостино || - || - || <code>agostino.test</code> || <code>dagoTest</code> || - || -
 +
|-
 +
| style="text-align: left" | Критерий Бонетта – Сайера || - || - || <code>bonett.test</code> || - || - || -
 +
|-
 +
| style="text-align: left" | Критерий Жарка - Бера || - || - || <code>jarque.test</code> || <code>jarqueberaTest</code> || <code>jarque.bera.test</code> || <code>rjb.test</code>
 
|}
 
|}
  

Версия 05:45, 24 февраля 2014

Предположение о принадлежности случайной величины нормальному закону распределения лежит в основе многих статистических методов и критериев. В ряде случаев соблюдение данного требования является критичным для применения того или иного метода.

На практике мы встречаемся с двумя вариантами задач по проверке принадлежности распределения нормальному закону: для одномерного и многомерного распределения.


Одномерное нормальное распределение

В качестве [math]H_0[/math] для всех нижеприведённых критериев является предположение, что «случайная величина [math]X[/math] распределена нормально».

Для демонстрации работы функций, реализующих различные критерии проверки принадлежности распределения нормальному закону сгенерируем вектор случайных чисел, имеющих стандартное нормальное распределение:

КодR

<syntaxhighlight lang="r">> x <- rnorm(n = 100) </syntaxhighlight>

Статистические критерии

Пакет stats

В данном пакете реализованы две функции, которые позволяют осуществить проверку принадлежности распределения нормальному закону.

  • shapiro.test - критерий Шапиро - Уилка
  • ks.test - критерий Колмогорова - Смирнова[1]

Данные функции возвращают результат в виде S3-класса - htest.

Пакет nortest

В данный пакет входят следующие функции:

  • ad.test - критерий Андерсона - Дарлинга
  • cvm.test - критерий Крамера - фон Мизеса
  • lillie.test - критерий Лиллиефорса
  • pearson.test - критерий [math]\chi^2[/math] Пирсона
  • sf.test - критерий Шапиро - Франчия

Данные функции возвращают результат в виде S3-класса - htest.

Пакет moments

В данный пакет входят следующие функции:

  • agostino.test - критерий Д'Агостино
  • bonett.test - критерий Бонетта – Сайера
  • jarque.test - критерий Жарка-Бера

Данные функции также возвращают результат в виде S3-класса - htest.

Пакет fBasics

В данном пакете не предлагается никакой оригинальной реализации критериев - код в основном заимствован из пакетов stats, nortest, moments. Данный пакет предлагает альтернативный вывод результатов в виде объекта S4-класса fHTEST, в том время как все предыдущие функции использовали S3-класс htest.

Функция normalTest() является «обёрктой» для ряда функций из того же пакета - fBasics. Задать необходимый критерий можно задать с помощью аргумента method. Доступны следующие критерии:

  • sw - критерий Шапиро - Уилка
  • jb - критерий Жарка-Бера
  • ks - критерий Колмогорова - Смирнова
  • da - критерий Д'Агостино
  • ad - критерий Андерсона - Дарлинга.

Пример вызова данной функции:

КодR

<syntaxhighlight lang="r">> normalTest(x, method = "sw") Title: Shapiro - Wilk Normality Test Test Results: STATISTIC: W: 0.9831 P VALUE: 0.2301 Description: Fri Feb 14 19:59:59 2014 by user: </syntaxhighlight>

Помимо функции normalTest() данный пакет включает в себя следующие функции:

  • shapiroTest - критерий Шапиро - Уилка
  • ksnormTest - критерий Колмогорова - Смирнова[2]
  • jarqueberaTest - критерий Жарка-Бера
  • dagoTest - критерий Д'Агостино
  • adTest - критерий Андерсона - Дарлинга
  • cvmTest - критерий Крамера - фон Мизеса
  • lillieTest - критерий Лиллиефорса
  • pchiTest - критерий Пирсона
  • sfTest - критерий Шапиро - Франчия

Данные функции также возвращают результат в виде S4-класса - fHTEST.

Пакет TeachingDemos

Данные пакет содержит только одну функцию, имеющую отношение к критериям проверки принадлежности распределения нормальному закону - SnowsPenultimateNormalityTest(). Данная функция возвращают результат в виде S3-класса - htest.

Пакет tseries

Данный пакет содержит только одну функцию, имеющую отношение к критериям проверки принадлежности распределения нормальному закону - jarque.bera.test, которая является реализацией критерия Жарка-Бера. Данная функция возвращают результат в виде S3-класса - htest.

Пакет lawstat

В данный пакет входят следующие функции:

  • rjb.test - критерий Жарка-Бера
  • sj.test - SJ-критерий

Сравнительная таблица реализации критериев в пакетах

Критерии stats nortest moments fBasics tseries lawstat
Критерий Шапиро - Уилка + - - + - -
Критерий Колмогорова - Смирнова + - - + - -
Критерий Андерсона - Дарлинга - + - + - -
Критерий Крамера - фон Мизеса - + - + - -
Критерий Лиллиефорса - + - + - -
Критерий χ2 Пирсона - + - + - -
Критерий Шапиро - Франчия - + - + - -
Критерий Д'Агостино - - + + - -
Критерий Бонетта – Сайера - - + - - -
Критерий Жарка - Бера - - + + + +

Таблица вызова функций в пакетах

Критерии stats nortest moments fBasics tseries lawstat
Критерий Шапиро - Уилка shapiro.test - - shapiroTest - -
Критерий Колмогорова - Смирнова ks.test - - ksnormTest - -
Критерий Андерсона - Дарлинга - ad.test - adTest - -
Критерий Крамера - фон Мизеса - cvm.test - cvmTest - -
Критерий Лиллиефорса - lillie.test - lillieTest - -
Критерий χ2 Пирсона - pearson.test - pchiTest - -
Критерий Шапиро - Франчия - sf.test - sfTest - -
Критерий Д'Агостино - - agostino.test dagoTest - -
Критерий Бонетта – Сайера - - bonett.test - - -
Критерий Жарка - Бера - - jarque.test jarqueberaTest jarque.bera.test rjb.test

Маленькие хитрости

Применение функций к нескольким переменным

С помощью apply-функций можно последовательно применить функцию к вектору, списку или массиву. Прежде чем всего нам необходимо сформировать таблицу данных. С помощью функции replicate() сгенерируем 10 переменных, имеющих стандартное нормальное распределение, которые объединяются в класс data.frame.

КодR

<syntaxhighlight lang="r">> DF <- data.frame(replicate(n = 10, rnorm(n = 100))) </syntaxhighlight>

Структура сгенерированной таблицы выглядит следующим образом:

КодR

<syntaxhighlight lang="r">> str(DF) 'data.frame': 100 obs. of 10 variables: $ X1 : num 1.051 1.08 -0.477 -1.396 3.423 ... $ X2 : num -0.602 2.29 -0.758 -1.615 -0.364 ... $ X3 : num 0.0559 -1.0117 0.5242 0.4105 -0.3191 ... $ X4 : num -0.0965 0.2006 0.29 0.7702 -0.0182 ... $ X5 : num -0.7074 -1.6111 0.3478 0.2504 0.0609 ... $ X6 : num -1.432 0.535 -0.932 0.581 -1.606 ... $ X7 : num -1.42407 -0.31827 -2.04648 -0.19856 0.00301 ... $ X8 : num 0.511 0.192 0.467 -1.308 2.496 ... $ X9 : num -0.8508 0.4481 -0.2828 -0.5464 0.0605 ... $ X10: num 1.421 0.408 1.254 -0.956 -1.91 ... </syntaxhighlight>

Для решения поставленной задачи можно воспользоваться функцией sapply(). Но прежде, нам необходимо немного отформатировать формат вывода результатов нашей функции: нам нужно извлечь значения критерия и его уровень значимости, т.к. результат функции shapiro.test() содержит также информацию, которая не подлежит включению в таблицу.

КодR

<syntaxhighlight lang="r">> shapiro.test(x) Shapiro-Wilk normality test data: x W = 0.9903, p-value = 0.6882 </syntaxhighlight>

Структура результата применения функции shapiro.test() представлена ниже:

КодR

<syntaxhighlight lang="r">> str(shapiro.test(x)) List of 4 $ statistic: Named num 0.99 ..- attr(*, "names")= chr "W" $ p.value : num 0.688 $ method : chr "Shapiro-Wilk normality test" $ data.name: chr "x" - attr(*, "class")= chr "htest" </syntaxhighlight>

Как видим, помимо значений критерия и уровня значимости здесь содержится информация о применяемом методе. Мы можем отфильтровать вывод следующим образом:

КодR

<syntaxhighlight lang="r">> normTest <- function (x) { + res <- shapiro.test(x) + return(c(res$statistic, p.value = res$p.value)) + } </syntaxhighlight>

Результат теперь будет выглядеть следующим образом:

КодR

<syntaxhighlight lang="r">> normTest(x) W p.value 0.9903 0.6882 </syntaxhighlight>

Теперь можно использовать данную функцию при обработке столбцов нашей таблицы.

КодR

<syntaxhighlight lang="r">> t(sapply(DF, normTest)) W p.value X1 0.9831 0.2301 X2 0.9936 0.9213 X3 0.9800 0.1333 X4 0.9829 0.2219 X5 0.9874 0.4625 X6 0.9862 0.3874 X7 0.9839 0.2617 X8 0.9833 0.2360 X9 0.9915 0.7834 X10 0.9808 0.1531 </syntaxhighlight>

Того же результата можно добиться и с помощью функции lapply()[3]:

КодR

<syntaxhighlight lang="r">> do.call(rbind, lapply(DF, normTest)) W p.value X1 0.9831 0.2301 X2 0.9936 0.9213 X3 0.9800 0.1333 X4 0.9829 0.2219 X5 0.9874 0.4625 X6 0.9862 0.3874 X7 0.9839 0.2617 X8 0.9833 0.2360 X9 0.9915 0.7834 X10 0.9808 0.1531 </syntaxhighlight>

Применение функций к нескольким по группам

Добавим к нашей таблице группы испытуемых:

КодR

<syntaxhighlight lang="r">> DF$GRP <- factor(sample(LETTERS[1:3], size = 100, replace = TRUE))</syntaxhighlight>

Состав групп получился следующим:

КодR

<syntaxhighlight lang="r">> table(DF$GRP) A B C 38 25 37 </syntaxhighlight>

Рассчитаем значения критерия Шапиро - Уилка для первого столбца для каждоый группы испытуемых:

КодR

<syntaxhighlight lang="r">> do.call(rbind, tapply(DF$X1, DF$GRP, normTest)) W p.value A 0.9522 0.13281 B 0.9607 0.28697 C 0.9410 0.07256</syntaxhighlight>

Графические методы

Многие исследователи также используют графические методы для определения степени отклонения распределения от нормального закона. В R реализована возможность построения Q-Q и P-P графиков, гистограмм и кривых распределения плотности вероятностей.

Пакет stats

Построение Q–Q plot с помощью пакета stats выглядит следующим образом:

КодR

<syntaxhighlight lang="r">> qqnorm(x) > qqline(x)</syntaxhighlight>

Stats-qqnorm.svg

Пакет QTLRel

Построение Q–Q plot с помощью пакета QTLRel выглядит следующим образом:

КодR

<syntaxhighlight lang="r">> qqPlot(x, x = "norm")</syntaxhighlight>

Qtlrel-qqplot.svg

Пакет car

Альтернативный вариант реализован в функции qqPlot() из пакета car:

КодR

<syntaxhighlight lang="r">> qqPlot(x, distribution = "norm")</syntaxhighlight>

Пакет e1071

Построение P-P plot можно осуществить с помощью функции probplot из пакета e1071:

КодR

<syntaxhighlight lang="r">> probplot(x, qdist = qnorm)</syntaxhighlight>

E1071-probplot.svg

Пакет gamlss

Ещё один интересный способ графического анализа представлен функцией histDist из пакета gamlss:

КодR

<syntaxhighlight lang="r">> histDist(x, family = "NO", density = TRUE) Family: c("NO", "Normal") Fitting method: "nlminb" Call: gamlssML(y = y, family = "NO", formula = x) Mu Coefficients: [1] -0.2273 Sigma Coefficients: [1] 0.09813 Degrees of Freedom for the fit: 2 Residual Deg. of Freedom 98 Global Deviance: 303.414 AIC: 307.414 SBC: 312.624 </syntaxhighlight>

Gamlss-histdist.svg

С помощью аргумента family можно задать семейство распределений для подгонки и сравнения[4].

Многомерное нормальное распределение

Перед началом обзора функций, реализующий критерии проверки многомерной нормальности, сгенерируем массив данных. Сделать это можно при помощью следующих функций

  • mvrnorm из пакета MASS
  • rmvnorm из пакета mvtnorm
  • rmnorm из пакета mnormt

Вот пример кода, генерирующего массив данных, имеющих многомерное нормальное распределение:

КодR

<syntaxhighlight lang="r">> means <- c(0, 0, 0, 0) # средние для переменных > sigmas <- diag(length(means)) # ковариационная матрица > mx <- rmvnorm(100, mean = means, sigma = sigmas)</syntaxhighlight>

Примечания

  1. Для оценки нормальности вызов выглядит следующим образом: ks.test(x, y = "pnorm")
  2. Данная функция вызывает ks.test(x, "pnorm") для трёх альтернативных гипотез - двусторонней и двух односторонних.
  3. По результатам сравнения производительности, данный вариант оказался чуть быстрее предыдущего.
  4. Более подробную информацию о доступных семействах распределений можно получить с помощью команды help("gamlss.family").